
Huerta, M. (2017, January 6) Speech–”Drones: A story of revolution and evolution” 
Retrieved from: 
https://www.faa.gov/news/speeches/news_story.cfm?newsId=21316

Building a portable ground control station for R/C planes
Sean McNamara

Mentored by Mr. Christopher Rogers

Unmanned aerial vehicle flying is an accessible hobby that is 
growing in popularity with over 670,000 new flyers registered in 
2016 alone (Huerta, 2017). One new possibility is to create a game 
where pilots can duel each other for entertainment. The objective of 
this project was to make this possible by creating a control station 
that will give the user improved ergonomics and the additional 
controls needed to play the game. Integrating this with Aidan 
Zoretic’s IR hit detection system would create the base of such a 
game, with the opportunity to be expanded to other applications 
(such as first person flying).

Results (cont.)

The Arduino code and all controls (both joystick axes and 
throttle) worked as intended, and allow for easy modification. More 
controls could also be added, such as foot pedals to accommodate 
more complex planes. Currently this system only works with PPM 
based transmitters with these specific parameters. Different code 
would be needed for compatibility with other radio transmitters. It 
has a trigger button to be used as an input for the game, but this does 
not have any functionality on its own. 

A great addition to this project that was not realized would be the 
addition of a first person view (FPV) camera system. Flying with an 
FPV system would allow for the use of a screen overlay that 
displays information to the pilot from sensors on the plane (such as 
battery status, pitch, roll, altitude etc.). With the IR aerial dogfight 
game the overlay would show key information for the game (such as 
a crosshair, hit markers, victor, etc.). These features can be used 
outside of gaming as well and make this project a low-cost aerial 
drone system.

For the Arduino® to control the plane it must communicate 
through the radio transmitter. Through online research it was found 
that most radio transmitters use Pulse Position Modulation (PPM). 
The radio transmitter was tested with an oscilloscope to determine 
its particular parameters. It starts at 3.3 V and has low (0 V) pulses 
for 400 μs then goes back to 3.3 V after a variable period of time. 
The period between each low pulse ranges from 600 μs to 1600 μs, 
depending on analog values from the controller. Each pulse delay 
determines the analog value for that control channel which 
determines the position of a servo or throttle power.

Code was written for an Arduino® to receive analog inputs from 
the joystick and throttle and generates a PPM output (See graphs 1 
and 2). Code was found online with a similar function, which the 
code used here was based on. These values were mapped to a value 
ranging from 600 μs to 1600 μs, which will represent the length of 
time after the pulse for that control. A voltage divider was connected 
to the PPM output to reduce the 5 V from the Arduino® to 3.3 V to 
avoid damaging the transmitter. Each of these pulses and delays 
creates a sequence that repeats every 20 ms, which is output through 
an S-video cable to the transmitter. 

References 

Materials and Methods

Introduction Materials and Methods (cont.)

The planes were built using foam board templates from 
FliteTestTM, a hobby website dedicated to providing information 
needed to start flying. Initially the FT Versa, (a flying wing design) 
was chosen for its high durability and the ease of mounting a camera 
or any other needed components to it. But it proved to be difficult to 
fly, and weight balance was an issue so the more basic FT Flyer 
(shown in Figure 1) was used instead. Construction of the FT Flyer 
only required a few cuts and hot glue, as opposed to the scoring and 
folding required for the Versa. Repairs were made after crashes. 

A joystick was then modified so that the two potentiometers 
inside (shown in Figure 2) could be connected to an Arduino® Mega 
to read the analog values. A throttle lever was constructed with laser 
cut plywood, a 20,000 Ω potentiometer, some brass tubing, a short 
wooden dowel, and two bolts. The controls were mounted to a basic 
rolling cart with Velcro® (Figure 2). All of the wiring was soldered 
to a small daughterboard that is mounted to the Arduino® to keep it 
secure (Figure 3). 

Conclusion

Graph 1: This is the 
PPM stream generated 
with a throttle value of 
0. The delay between 
the 3rd and 4th voltage 
drops is at its minimum 
value.

Graph 2: This is the 
PPM stream generated 
with a full throttle 
value. The delay 
between the 3rd and 4th

voltage drops is at its 
maximum value. 

0
0.5

1
1.5

2
2.5

3
3.5

0 0.002 0.004 0.006 0.008 0.01 0.012

Vo
lta

ge

Time (s)

Zero Throttle

Figure 1: Completed FT Flyer (26” wingspan). Figure 2: The basic control 
setup.

Figure 3: The Arduino® Mega 
with the daughterboard 
attached.

Results
The Arduino® code functioned well with no noticeable delay. It 

generated a PPM output (Graphs 1 and 2) that was able to 
effectively communicate with the transmitter. This resulted in 
smooth responsive controls. The code fully links the Arduino® with 
the transmitter with the ability to accommodate for more controls 
that would be needed for an advanced plane. The controller 
currently lacks the ability to control a more complex plane. The 
controller also includes a trigger button that can be wired for other 
uses.

The modified joystick and built throttle were found by users to be 
comfortable to use. The only ergonomic issue found was that the 
throttle felt loose and was easy to move unintentionally. 

0
0.5

1
1.5

2
2.5

3
3.5

0 0.002 0.004 0.006 0.008 0.01 0.012

Vo
lta

ge

Time (s)

Full Throttle


